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The ship is assumed to be a slender body of revolution with its axis in the mean 
free surface and making periodic oscillations of small amplitude. The theory 
presented here is a generalization of the well-known slender-body theory of 
incompressible aerodynamics in which the fluid is externally unbounded. One 
version of that theory goes as follows: approximate the body by axial line- 
distributions of known point singularities (sources and multipoles), whose 
strength is to be determined; by means of the Fourier convolution theorem 
express the velocity potentials of these line distributions in terms of the Fourier 
transforms (in the axial direction) of the point-singularity potentials; expand 
these Fourier transforms in powers of the radius and retain only the leading 
terms (it is here that the slender-body assumption is introduced); by means of 
the Fourier convolution theorem interpret the resulting expressions. By this 
procedure it is not only shown that near the body the potential is two-dimen- 
sional harmonic in every plane normal to the axis; but also the interaction 
between sections is shown to be involved in the ‘constant’ term and to depend 
in an explicit manner on the coefficient functions, which can be found without 
difficulty by applying the prescribed boundary conditions. This foregoing pro- 
cedure can be justified when the body is slender and sharply pointed. 

In the present paper the same procedure is adapted to an oscillating surface 
ship a t  zero speed. The fluid is now bounded by the ship, and also by a horizontal 
plane (the mean free surface) on which a wave boundary condition must be 
applied. The point singularities are now wave sources and wave-free potentials, 
each satisfying the free-surface condition. The Fourier transforms of these 
singularities are found and are expanded near the axis; the expansions near the 
axis are the only parts of the argument that present any serious difficulty. When 
only the leading terms are retained and the results are interpreted by the con- 
volution theorem, explicit two-dimensional potentials are again obtained. 

It is assumed that the ratios (ship-radius/ship-length) and (ship-radius/wave- 
length) are small whereas the ratio (ship-length/wave-length) may have any 
value. Expressions are given which are valid according as this last ratio is not 
large or not small. The potential on the body is found, and forces, moments and 
wave damping are calculated. It is believed that the expansions can be extended 
with little trouble to certain other ranges of those ratios, to other cross-sections 
and to the boundary condition for ships moving a t  non-zero speeds. 
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1. Introduction 
In  the present paper we shall be concerned with the fluid motion near an 

oscillating ship, and with the resulting hydrodynamical forces. In  practice 
gravity effects (such as wave resistance) and viscous effects (such as skin friction) 
are both important and cannot be separated, but, since there is as yet no theory 
including both, we shall here neglect viscous effects; the motion is then irrota- 
tional and is described by a velocity potential. Inviscid-flow calculations are 
familiar in aerodynamics, and there their role in determining the total force is 
now quite well understood (see Thwaites 1960, Ch. 3). The motion of surface ships 
is in comparison much less tractable, because the motion of the free surface must 
be determined as part of the problem. This gives rise to a wave resistance even in 
an inviscid fluid. No mathematical progress can be made unless the equations 
can be linearized, for which purpose additional simplifying assumptions are made : 
only such bodies and ship motions are treated as will cause the resulting fluid 
motion to differ only slightly from a state of rest or of uniform flow. 

For instance, we may consider a thin-ship model, in effect a vertical plate of 
small thickness moving horizontally along itself with uniform velocity (Michell 
1898). Such a thin ship, of beam much smaller than draft and length, can be 
represented by a distribution of Kelvin wave sources over its mid-plane (for a 
review see Wehausen 1957). The oscillations of the Michell ship have recently 
been studied by Peters & Stoker (1957) who have confirmed that in the first 
approximation its virtual mass and wave damping both vanish. The Michell 
model is therefore inappropriate when virtual mass and wave damping are of 
interest, as in most problems of ship motion in waves. 

To overcome this defect it is natural to consider slender ships, of comparable 
beam and draft, and of length much greater than either. Since evidently the 
disturbance tends to zero as beam and draft both tend to zero (when the ship 
contracts to a line), a scheme of linearization based on the thickness-length ratio 
is reasonable. A considerable amount of work has already been published on 
submerged slender ships, but it is generally realized that the motion near a sub- 
merged ship differs materially from the motion near a surface ship. Many of these 
calculations have been concerned with strip theories. It can be seen that near a 
slender body the motion in planes normal to the ship's axis is nearly plane 
irrotational and can, to a rough first approximation, be found without reference 
to the flow parallel to the axis. In  the strip theories the three-dimensional motion 
is synthesized approximately by combining these two-dimensional motions, and 
various ways of doing this have been suggested. Havelock (1956) has compared 
two strip methods of calculating the wave damping of a submerged spheroid at  
zero speed. The first method consists in calculating the two-dimensional energy 
transfer per unit length from a circular cylinder of radius equal to the local 
radius, and integrating this along the length of the cylinder; this clearly cannot 
give a good approximation when the waves are long compared to the length of the 
ship. In  thesecond methodthe spheroidisreplaced by anaxialdistributionofwave 
dipoles, of strength depending on the local area of cross-section, and this gives 
good results provided only that the spheroid is sufficiently slender. Both these 
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methods have been applied to surface ships a t  zero speed, the first by Tasai 
(1959), the second by Grim (1957, 1960) who points out that for surface ships of 
finite length the first method wrongly predicts an infinite virtual mass for infinite 
wave-length. 

Apparently no attempt has hitherto been made to adapt for surface ships the 
techniques of the well-established slender-body theory for incompressible un- 
bounded media (for an account see Thwaites 1960, Ch. 9, § 11). It is the purpose 
of the present paper to provide such an adaptation. One version of the theory for 
unbounded media proceeds in the following steps: 

(1) Approximate the body by axial line-distributions of known point 
singularities (sources and multipoles), whose strength is to be determined. 

(2) By means of the Fourier convolution theorem express the velocity 
potentials of these line distributions in terms of the Fourier transforms (in the 
axial direction) of the point-singularity potentials. 

(3) Expand these Fourier transforms in powers of the radius (logarithms will 
also appear), and retain only the leading terms. (It is here that the slender-body 
assumption is used.) 

(4) By means of the Fourier convolution theorem interpret the resulting 
expressions. 
This procedure can be justified if the body is sharply pointed at the ends. (Since 
the problem for an unbounded incompressible medium is linear it should be 
possible to devise suitable end-corrections for blunt bodies, but this has apparently 
not yet been done.) 

If co-ordinates are defined as in $ 2  below and if the motion is symmetrical 
about 8 = 0 and 8 = in, then in an unbounded medium the velocity potential 
is thus found near the body to have the approximate form 

L O0 a&) COB 2ne $(x, r cos 8, r sin 8) = 2a0(z) In- + 2 C __ ____ 
r 2n r2n 

where the terms (1.1) are clearly plane harmonic in every plane x = const. (and 
where the coefficient functions can be found from the boundary condition), while 
the terms (1.2) describe the interaction between sections, which is the principal 
object of the investigation. The same result has also been obtained in other ways, 
by Ward (1955) without the use of Fourier transforms, and by Tuck (1962) using 
a procedure of matching inner and outer expansions which is particularly con- 
venient for non-circular sections. 

The foregoing procedure will here be adapted to a periodically oscillating 
slender surface ship a t  zero forward speed. The velocity potential is now defined 
in that part of the lower half-space y > 0 lying outside the ship. On the mean free 
surface y = 0 a boundary condition must be applied. Accordingly for step (1)  
the point singularities will be chosen to satisfy this free-surface condition and we 
shall in fact take them to be wave sources and wave-free potentials. For step (2) 
we shall need their Fourier transforms, which are obtained in the Appendix at the 
end of the paper. For step (3) we shall need the small-radius expansions of these 
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Fourier transforms, also given in the Appendix. The transforms of the wave- 
free potentials are easily expanded, but the transform of the wave source is much 
more complicated and its expansion is the most difficult part of the problem. 
For step (4) we shall obtain the transforms of the leading terms in the expansion. 

Expansions in terms of a wave source and an infinite set of wave-free potentials 
were introduced for plane problems by Ursell (1949a, b )  and for the oscillating 
sphere by Havelock (1955). The three-dimensional expansionusedhere generalizes 
Havelock’s work and was proposed by Grim (1957,1960), who did not succeed in 
going beyond step (1) and thus obtained neither an expansion analogous to (l.l),  
(1.2) nor the interaction between sections. He observed, however, that when this 
interaction is negligible (KL >> 1) the local source strength must be the same as 
for an infinitely long cylinder, of appropriate cross-section, and he suggested an 
iterative scheme of approximation. 

A very interesting alternative treatment both for zero and non-zero speeds has 
recently been proposed by Vossers (1962). By means of Green’s theorem he 
obtains a linear Fredholm integral equation of the second kind for the potential 
on the ship where the normal velocity is prescribed. If now the variation in the 
axial direction is treated as slow, then the integrals can be approximated by 
simpler integrals; in particular the kernel of the equation may be expected to 
reduce to the kernel appropriate to a plane problem, to which known techniques 
are applicable. 

Vossers’s results require difficult approximations for quadruple integrals, and 
his resulting integral equation (Ch. 5 )  is simpler than other integral equations 
previously obtained for plane problems (e.g. Ursell 1953), which suggests the 
possibility of errors. Nevertheless, it is felt that the method can be made to work, 
and that it has many advantages, even if the results so far obtained must be 
regarded as provisional. 

We note that at zero forward speed our problem is linear provided only that 
the amplitude of oscillation is sufficiently small. Throughout the present paper 
the body will be assumed to be sharply pointed, and difficulties near the ends 
will be ignored. Only bodies of revolution with their axis in the surface will be 
considered. It will be assumed that the ratios (ship-radius/ship-length) and (ship- 
radius/wave-length) are small whereas the ratio (ship-length/wave-length) may 
have any value. Expressions will be given which are valid according as this last 
ratio is not large or not small. The potential on the body will be found; and forces, 
moments and wave damping will be calculated. 

2. Expansion of the velocity potential 
It will be supposed that the mean position of the axis of the slender body of 

revolution lies in the mean free surface y = 0,  along the segment - +I, 6 x < 61; 
of the x-axis, and that y increases with depth. The z-co-ordinate is measured 
horizontally at right angles to the x-axis. Cylindrical polar co-ordinates are 
defined by y = r cos 8, z = r sin 8. The equation of the mean position of the body 
is taken to be r = ro(x),  where rh(x) = dr,(x)/dx is small, and where it is supposed 
initially that r,, and all its derivatives vanish at  the ends x = & &L. (This restric- 
tion will be discussed below, near the end of 5 2.) We consider simple harmonic 
forced motions of heaving and pitching of period 27r/v, at zero mean speed. Since 
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the amplitude is small, the boundary condition on the body may be applied at the 
mean position of the body. Then the velocity potential $(x, y, z )  e-iut satisfies 

in the fluid. The boundary condition on the body T = ro(x)  is 

cos 0, 3 - - 210 ~ _ _  + wo x + wo ro(4  r6(4 
an (1 + (r;)2P 

where (&$/an) eciUt is the velocity component normal to the body, vOe-iut is the 
forced velocity of heaving parallel to the y-axis, and w,, e-iut is the forced angular 
velocity of pitchingabout the z-axis. The boundary condition ( 2 . 2 )  may be written 
in the form a$/ar - T;(x)  a$px = (u0 + w0 x + wo T, t-6) COS 8 ( 2 . 3 )  

= V(x)cos0, say, 

where the second term on the left-hand side is small compared with the first. 
We shall accordingly replace (2 .3)  temporarily by the boundary condition 

where V ( z )  is a prescribed function. The boundary condition on the mean free 
surface y = 0 is 

where 27r/K = 2 ~ g / 8  is the wave-length of waves of period 2nl(r. This linearized 
condition and condition ( 2 . 2 )  are valid when the amplitudes of oscillation are 
small compared with all other lengths involved in the problem; the body need not 
be slender. The boundary condition a t  infinity is a radiation condition: the waves 

(2.6) travel towards infinity, R+(a$/aR - i ~ $ )  .+ 0 
as R = ( ~ ~ + y ~ + z 2 ) f  .+ 00. 

We shall construct a velocity potential by the superposition of potential 
functions each satisfying identically all the boundary conditions except (2.4) 
which will then be satisfied to a sufficient approximation by a suitable choice of 
coefficient functions. We shall see that (except possibly near the ends) the flow 
can be approximately generated by wave singularities distributed along the axis 
of the body. Similar constructions are familiar in the flow past a slender body in 
an unbounded medium and are known not to be exact except possibly for a 
restricted class of smooth bodies. Our expansion is 

a$/& = V ( X )  cos 6 on T = ro(z ) ,  (2.4) 

(2.5) K$ + a$/ay = 0, 

t There is an interesting difficulty connected with the completeness of this expansion at 
a large distance from the body. Consider the analytic continuations of $(x, y, z)  into the 
half-space y < 0. Since the wave-free potentials are single-valued, the terms (2.8) are also 
single-valued, and so is their sum when y2 + z2 > {max ro(x)}2 .  And the term (2.7) is single- 
valued in y < 0 except for a cut along the plane z = 0. But it can be shown that the 
potential $(x, y, z )  cannot in general be continued to points vertically above the body. 
Thus the expansion (2.7)-(2.8) cannot be complete. It is interesting to remark that the 
transform cD,(k, y, z )  can for every k be continued into ya + z* > {max ro(x)}2 except for a 
cut along z = 0. This is somewhat different from the corresponding difficulty in ordinary 
slender-body theory, which relates to analytic continuation into the body. 
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where the coefficient-functions ao([), a,([) vanish outside [ [I < 4L. The potential 
in (2.7) is a wave source at the origin (Thorne 1953, p. 712) 

$o(x, y, z )  = 4 A ec-k'v J,{k' (x2  + z2)4} dk'; 
0 k - K  

the path of integration passes below the pole k' = K in order that (2.9) may 
satisfy the radiation condition (2.6). The potentials $, in (2.8) are wave-free 
potentials singular a t  the origin 

where P, is the Legendre polynomial of degree m, and R = (x2  + y2 + 9)*. It is 
known from the work of Havelock (1955) on the heaving half-immersed sphere 
that (2.10) satisfies Laplace's equation (2.1) and the free-surface condition (2.5); 
the radiation condition (2.6) is satisfied trivially. Each of the singularities (2.9), 
(2.10) has axial symmetry about the (vertical) y-axis. We could write down-wave 
sources with other symmetries and consider line distributions analogous to (2.7) 
and (2.8)' but we shall see that (2.7) and (2.8) are sufficient approximations for 
our purpose. The expansion (2.7)-(2.8) was first proposed by Grim (1957, 1960), 
but our determination of the coefficients and our conclusions will be different. 

We shall assume initially that not only ao(z) and a,(x) but also all their 
differential coefficients are continuous when 1x1 < $L, and that they vanish when 
x = & $L and when 1x1 > BL. (This corresponds to a body with very sharply 
pointed ends, see the discussion near the end of $2.)  Then the Fourier transforms 

m 

A, (k )  = 1 an( [ )  eiktd[ 
-m 

tend to zero rapidly as 1 kl tends to infinity (Lighthill 1958, theorem 2), and by the 
convolution theorem for Fourier transforms we have from (2.7) and (2.8) the 
equation 

(2.11) 

where Qn(k,  y, z )  = 

direction, which clearly must satisfy 

$,(x, y, z )  eikrdx are the Fourier transforms in the x- jrm 

(2.12) 

As was explained in the introduction, we shall now expand Qo and Q, near 
(y = 0, z = 0 ) ,  retain only the leading terms and then apply the inverse Fourier 
transformation. The expansion of Qo is the most difficult part of the argument, 
while the expansion of 0, is straightforward. The Fourier inversion will lead to 
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new functions sl, s2 and s3 which will appear in the interaction term. It is shown 
in the Appendix at the end of this paper that 

Q o ( k , y , z ;  K )  = 2 IOw I k l  coshp e--lklg cash cos (/k( z sinhp) dp 
Ikl coshp- K 

(mi -a) coth cx W cosh ma 
(n - a*) cot a* } (21,(lkl r )  + 4 c 1 ( - l ) m I m ( l k l  r )  cosma (cos ma*}) 

sinh ma coth a W 

where the upper or the lower expression is applicable according as 

(2.14) 

Note that a(Iv( Ikl r )  cos vO)/av = cos v8(aIu/av) - 8 sin v8 I, is not a single-valued 
function of 8; a cut along 8 = + n  is needed. In  these equations, and KO are 
Bessel functions of imaginary argument (ErdBlyi 1953, p. 9), 

(2.15) 

(2.16) 

(2.17) 

(2.18) 
1 1  1 

$(1) = -7, $(m+ 1) = -y+,+?+ ... +-, 
Y m 

when m is an integer, and y = 0.5772 ... is Euler’s constant. 
We can use these power series to expand 4jo(k, y, z)  for small r :  

a0( lkI, r cos 8, rsin 0; K )  = - 2 In Kr + 2KrlnKr cos 8- 2Kr 8sin 8 
- 2Kr cos 8 - 2y( 1 - Kr cos 8 )  

+ 2(1 - K r  cos 8)  {Fl(lkl /w + m l k l  / K ) )  
+ O(r21n r ) ,  (2.19) 

where 

and 

in coth a 
(2.20) 

(2.21) I- ln(Zcosha)-acotha 
In ( 2  cos a*) - a* cot a* 

W 

= 1 1 Ao(k) 4jo(k, y, z )  e-ikxdk 
2n --m 

Ao(k) { - 2 In K r  + 2Krln K r  cos 8 - 2Kr 8sin 8 

- 2Kr cos 8 - 2y( 1 - Kr cos S)> ecikXdk (2.22) 

+ 2( 1 - Kr cos 8 )  2n I* Ao(k) kl( g) + F2( )} e--ikx dk (2.23) 

+O(r21nr), 
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where we are using the assumption that A,(k)  tends rapidly to zero as I kj tends to 
infinity to ensure that all integrals in (2.22) are convergent. In  (2.22) we now use 
the Fourier inversion formula 

A,(k)  e--ikxdk = a,(x), (2.24) 

and in (2.23) we use the convolution theorem to express the integral in terms of 
a,(x). Thus 

where 

a, nK 
n K (k2-  K2)i  

cos kcdk + '1 cos kcdk 
inK 

= &inKHJ')(K 151) 
from Watson (1944, p. 48, equation (2), and p. 170, equation (4)); here H61) is the 
Hankel function J, + iy0. Thus we see that 

a' 

LJm A,(k) l$(g)e- ikxdk Ikl = @ n K f  a,(g)H,l)(KIz- l l )d~.  (2.25) 
2n --m 

We also write down an alternative form for (2.25). We have 

whence 
Fl(lyl) N in+ain11112 as 11 -+ 0, 

A , ( k ) P  (M) e-ik2dk 
2n --m l K  

I k l  l K )  - e i k z  dk. (2.26) 
l W  m 

= -1 277 -a A , ( k ) i n e n k z d k + I /  2n ( - i k ) A , ( k )  ( - i k )  

By use of the obvious relation 
m 

we see that (2.26) is equal to 

where by definition 

which is clearly an odd function of KC. We may therefore write 

g,(KC) = - &l(lKCl)sgnKc> 

(2.27) 

(2.28) 

(2.29) 

(2.30) 
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where sgnq = k 1 according as q < 0, and we obtain for (2.26) the alternative 

It can be shown from (2.29) and (2.48) that sl(KC) + 0 as Sg --f + co, and it can 
thence be shown that the form (2.31) is appropriate when KL is large (see 
9 4 below) but we do not investigate the properties of the function s1 in detail here. 

The other integral ( l /2n)1Ao(k)  F 8 ( l k I / K ) d k z d k  occurring in (2.23) can be 
treated similarly. The function 

(2.32) 

is regular in the positive quadrant except a t  6 = 0;  it  is easy to see that C = 1 is not 
a singularity. As c +  0, F,(C) - +CzlnC; as C-+ co, F'(6) - - In&{. Thus the 
integral is 

F,( 6) = - In +6 + ( 1 - C2)-* In [C/{ 1 + ( 1  - Cz)4}] 

Fz( I kl /K) e--ika dk (-22) A,@) - - -~ 

( -  ik) 

where by definition 

(2.33) 

(2.34) 

which is clearly an odd function of KC. In  deriving an alternative form for (2.34) 
it  is therefore sufficient to consider positive values of KC. The integral (2.34) is the 
imaginary part of 

' S O 0  k - l ~ , ( k / ~ )  eikcdk 

which can be transformed by rotating the line of integration to the positive 
imaginary k-axis. We find that 

n o  

of which the imaginary part is 
dw 

g,(K$ = - ., (1 - (1 + w2)-9} e-U'K6 - 
Y s," W 

(2.35) 

(2.36) 
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and sgnr = & 1 according as 7 5 0. It can be shown that 

and sz(lrl) = -1n Irl -~-ln2+s3(lrl)7 say, (2.37) 

where by definition 

s d l r l )  = ik as Irl -+a2 

(2.38) 

which tends to 0 as 7 tends to 0;  see also (2.49). It follows from (2.33) and (2.35) 
that 

where s2 is defined by (2.36). This completes the discussion of the axial wave- 
source distribution. 

Turning now to the line distributions of wave-free potentials, we note (see 
Appendix at the end) that 

m 2 
Q n ( k , y , z ;  K )  = ~ ]k/2n-1/ ( K +  Ikl coshp)(coshp)Zn-l 

(2n) ! 0 
x e--lklucoshp cos (kx sinhp) dp. (2.40) 

s=n-1 (2n - l)!  
Since (cosh,u)2"-1 = 1 2n--2 c cosh(2n-2s- 1)p, ( 2 )  s=o s! (2n- 1 - s ) !  

K,(lkl r )  cosmi3 = coshmpe-lkl~Coshpcos (kzsinhp)dp, 
10" 

and 

where K,(<) is a Bessel function of imaginary argument (Erdblyi 1953, p. 9), we 
may write 

+ Ikl K2n+.-z( lkl r )  cos (2n - 2s - 2) 0 + 2K lkl r )  cos (2n - 2s - 1) 0); 
(2.41) 

the leading terms in the expansion near r = 0 are 

and so 

with a smaller error when n > 1. It is seen that near r = 0 the functions Qn are 
nearly independent of k, and nearly equal to the wave-free potentials for the 
plane circle problem (Ursell 1949a, p. 223). It follows that 
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We can now write down the total approximate potential as the sum of (2.22), 
(2.23) and (2.43) where (2.23) is given by (2.25) and (2.39): 

#(x, y, z )  = a,@) { - 2 In Kr + 2Kr In Kr cos 8 - 2Kr 8 sin 8- 2Kr cos 8 

-2y ( l  -KrcosO)+O(r21nr)} (2.44) 
m 

+2(1 -KrcosO)@rK [ ao(lJHJ1)(K Ix-cI)d<+O(r2)  (2.45) 
J --m 

+ g / z m d y s 2 ( K  1x--[1)d<+O(r2)) (2.46) 

where s,(\q[) is given by (2.36); see also $ 4  below. 
It can be shown that, for 6 > 0, 

and 

dw 
sl(c) = 2i eiwc 

w(w2- 1)4 

(2.48) 

Here thenotationof Watson (1944) and Erdelyi (1953) has been used : Jo and Yo are 
Bessel functions order 0, and 

(46) 2mf1 

Fw + +)IZ 
m 

0 
Ho(5) = x ( -  

is the Struve function of order 0. 
It has so far been assumed that ao(x) and a,(x) are infinitely differentiable, but 

in fact the full force of this assumption was not needed to derive the formula 
(2.44)-(2.47). Sufficient conditions for these will not be discussed in detail here, 
but it can be shown that it would be sufficient to assume, e.g. that IkL13A0(k) 
and 1kLI3A,(k) remain bounded as k + & 00, in which case this formula is 
obtained with slightly larger error terms. And these conditions on the Fourier 
transforms are satisfied if, e.g. ao(x), a,(x), u;)(x), aA(x) are all continuous in the 
interval -+L 6 x 6 +L including the end-points (Lighthill 1958, p. 56, equa- 
tions (30) and (34)). There are additional logarithmic terms if u; and a; are 
discontinuous at the end-points, as is well known in slender-body theory for an 
unbounded medium (Thwaites 1960, p. 388, equation (69)). Such terms indicate 
a failure of the slender-body approximation, requiring further investigation. 
Stricter conditions are needed if aq5jax is also to be bounded at the ends, but 



Slender oscillating ships at zero forward speed 507 

overall quantities like total force and moment are not likely to be seriously in 
error even if these conditions are not satisfied. We now return to the approxima- 
tion (2.44)-(2.47) for the potential. 

The next step must be to determine the coefficient functions a,(x), an(x). It 
will appear that these take different forms according as KL is large or small, both 
forms being applicable when KL is moderate. For large KL it seems physically 
reasonable to expect that there should be a strip theory derivable from two- 
dimensional solutions, and this will be confirmed in Q 4. The case of small KL is 
more interesting, and the solution reduces in the limit KL -+ 0 to slender-body 
theory for an unbounded medium. This case will be studied in some detail in Q 3. 
Forces, moments and wave-damping will be briefly discussed in 5 5. 

3. The boundary-value problem for small and moderate values of KL 
Let us examine the behaviour of the expression (2.44)-(2.47) for the potential 

as K + 0 formally. Then clearly I (2.44)l -+ co; and in (2.46) the function s2 -+ 00, 

see (2.37), and so I(2.46)l +00. The sum of (2.44) and (2.46) remains finite, 
however. We rewrite the potential in terms of the function s3 defined by (2.38), 

$(z, y, Z) = a,(z) { - 2 In (r/Ll) + 2Kr In (r/L) cos 8 - 2Kr 8 sin 0 - 2Kr cos 0 

+O(r21nr)) (3.1) 

13.31 

(3.5) 

In  this expression the length Ll is arbitrary, and when KL is small or moderate it 
is convenient to take Ll = L, as we shall henceforth do. As a check, if we let KL 
tend to 0 we find that 

q5 -+ - 2ao(z) In (r/L) 

a finite limit corresponding to the boundary condition aq5/ay = 0 on y = 0, which 
agrees with the expression quoted in Q 1 above. Returning now to the expression 
(3.1)-(3.5), we shall find the coefficient functions a,(x), a,(x) in terms of the 
prescribed radial-velocity distribution (2.4), 

a#/% = V ( z )  cos 0 on r = ro(x). 
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Let us now introduce the h e a r  operator 
m 

--m 

When K L  is small or moderate it is easy to see that 

I=mo(x))l = 0 lao(x)l. 

Then (3.1)-(3.5) can be written more briefly as 

q5 = a&) { - 2 In ( r /L)  + 2Kr In ( r f L )  cos H - 2Kr 8 sin 8 - 2Kr cos 0) 

+ 2( 1 - Kr cos 0 ) 9 ( a 0 )  

Therefore, when r = ro(x), 

- 2K cos 0 q a , )  
m cos 2n0 K cos (2n - 1)  0 

-2Ca&) 1 ( T + G  rgn 

= V ( x )  cos0 from the approximate boundary condition (2.4). (3.9) 

We see immediately that a, = O( Vr,) and a, = O( V@*l). Let us find the 
potential (and therefore the pressure) on the body correct to order 

Vr, Kr, In (K/ro) 

when K L  is small or moderate. Since the leading term in $ is of order Vr,  In (L/ro) 
we see that in that term we need a,(.) correct to order Vr,Kr,, whereas the 
coefficient functions a,(x) are needed only to order Vrgn+l Kr,ln (L/r,). These 
functions are found by a Fourier method. When (3.9) is integrated from 8 = 0 
to 8 = &r, we obtain 

- 2Ka,(x) - 2KL?(a,) 

a (x) (-1)-1 
- 2h' _I_ = V ( x ) ;  

rgn 2n(2n- 1) 
(3.10) 

when (3.9) is multiplied by cos 2nH (n = 1,2 ,3 , .  ..) and integrated from 8 = 0 to 
8 = &n, we obtain 

(3.11) 
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on noting that 

(3.12) 

In  (3.11) it is sufficient to use the crude approximation a,(%) i - 7r-l Vr,. Then 
from (3.11), 

2 (-1p Vrinfl 
n- 4n2 - 1 1 + (2f.n) Kr, In (L/r,) 

a,(z) = -~ (3.13) 

(3.14) 

with an error of order Vrin+l Kr,, where by definition 

1 V ( 4  T O ( 4  1 2 L 
n- 1 + (2/n-)Kr01n(L/r0) n- n-2 TO 

+ - V ( x )  ro(x) - - V ( z )  ro(x) Kr,ln -. (3.15) W ( x )  = - 

In  the terms on the second and third line of (3.10) it is sufficient to write 

2 ( - l )% 
adz) + -n--'Vr0, and a,@) + - ___ Vrtn+l, respectively, 

7r 4n2- 1 

whence 

(3.17) 

On substituting (3.14) and (3.17) in the expression (3.8) for the potential we find 
that; on the body, correct to order Vr, Kr,ln (L/r,), the potential corresponding to 
the radial-velocity boundary condition is 

L 
YO 

&r, ro cos 8, T, sin 8)  = 2a,(x) (1 - Kr, cos 8) In - - 2 9 (  W )  
m 

+ 4W(x) (-'In cos2n0 (3.18) 
zn(4n2-1) 

= - 2W(x) (1 - Kr, cos 8)  In- - 2 9 (  W )  
L 

TO 

1 m 

m 

+ 2W(z) ( - 'In cos 2n6, 
n(4n2- 1) 

(3.19) 

where W ( x )  is defined by (3.15), a n d 9  denotes the linear operator defined by 
(3.7). The terms involving9( W )  contain integrals of W over the whole length of 
the body and involve values of V and ro in cross-sections other than x; thus 9( W )  
expresses the interaction between sections. The order of magnitude of this inter- 
action term is only slightly less (by a factor In (Lfr,)) than the leading term in the 
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potential. This was expected since slender-body theory for the limit K L  + 0 leads 
to a similar result, see equation (3.6). 

We must, however, remember that the exact boundary condition (see equa- 
tion (2 .3 ) )  is 

(3.20) 

and in the last term on the right we may substitute the leading term 

= V ( x )  cos B + rA(x) aq5/ax, 

q5 + - SW(x) In (L/ro),  

We then find that the modification to the radial velocity is of order 

G(ro/L)21n (L/ro) 
and therefore negligible, and (3.19) is thus also the solution of the problem with 
boundary condition (3.20) correct to our order of approximation. 

4. The boundary-value problem for moderate and large values of K L  
This will be treated more briefly since the analysis is similar to $ 3 above. To 

avoid confusion the values of the coefficient functions are denoted by at(x) and 
az(x), and we use the expression (2.44)-(2.47) for the potential, except that we 
substitute (2.31) in (2 .45) .  Thus 

#+, y, x )  = a$(.) { - 2 In Kr+ 2Kr In Kr COB 0 - 2 K r  Bsin 8- 2 K r  cos B> (4.1) 

(4.2) + 2( 1 -Kr cos 0) 2'*(a$) 

where bv definition 

The functions s , ( ~ )  and s2(7) are defined by (2.29) and (2 .30) )  and by (2.38)) 
respectively; both these functions are small when 7 is large. Thus for moderate 
or large K L  we have l=Y*(a;)l = 0 \a$\. Comparison with (3.8) shows that the 
calculation is formally identical with the calculation of $ 3  provided that we 
write K-l for L and 2'* for 2'. We find that the potentialon the body for moderate 
or large K L  has the value 

1 
#(x, ro cos 8, r, sin 8) = - 2W*(x) (1 - Kr, cos 0) In ~ 

Krll 

- 2 2 * (  W*) 1 - - 

1 1 m 

( :  
7 Zn(2n- 1)  (4nZ- 1) 

4 
+-Kr W*(x)jn-, 1 + 2 r  ~ 

n o  hr0 
( -  1)" + 2W*(z) C - -__- cos 2nB, 

n ( 4 n 2 - 1 )  
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where 
1 2 1 

V ( x ) r  (4 . V ( x )  ro(x) - V ( x )  ro(x) Kroln-. (4.7) 
1 w*(x) = - 0 - - 
n1+(2 /~ )Kro ln ( l /Kro )  n 7l Kr0 

We also have 

The interaction between sections is given by the terms involving9*, and it can 
be shown that for moderate KL the potentials (3.19) and (4.6) are in agreement. 
We note from (4.4) and (4.5) that 9 * ( W * )  -+ (in -7) W* as KL -+ 00. Thus in the 
limit as KL -+ 00 we find that the potential (and thus the pressure) depends only 
on the local values of V and ro; this is physically reasonable and a similar con- 
clusion presumably holds whenever KL is larger, whether Kro is small or not. 
The potential is then expected to be nearly the same as the two-dimensional 
potential on an infinite cylinder having radius ro(x),  where the potential satisfies 
the wave-boundary condition 

and 
K#+a@y=o  on y = o  

= V , ( X )  cos 8 on r = ~ ~ ( 2 ) .  

This problem has been discussed by Ursell (1949a, 1953, 1957). 
As before (see the end of Q 3) the solution is unchanged to our order of approxi- 

mation when the exact boundary condition (2.3) is substituted for the approxi- 
mate boundary condition (2.4). 

5. Forces, moments and wave damping 
We note that the element of area of any body of revolution r = To(%) is given 

by ro{l + (rA)2}idxd8. We observe also that the dominant forces and moments 
are hydrostatic. The hydrostatic force on a strip dx due to immersion yo@) is 
Zpgr, yodx = 2 i p a V ( x ) r 0 ( x )  K-ldx, the total hydrostatic moment about the z- 
axis is 2 ipa(x  + ro rA) Vr,, K-l dx .  These expressions are exact. 

The total vertical component of hydrodynamical force on a strip is easily 
seen to be 

2ipar0(x) dx #(x, ro cos 8, ro sin 8 )  cos 8 d6, (5.1) s,"" 
and the total moment about the z-axis on a strip of width d x  is 

J o  

Both force and moment invoIve the expression $cosOd8. For instance, 
when (3.19) is substituted, this integral is 

L 

r0 
- 2W(z) In- (1  - &i-Kro) - 2 2 (  W )  

1 m 

7l (5.3) 
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Now the brace in (5.3) can be shown to have the value 3 - 2 In 2 + in2, and the 
sum in (5.4) to have the value 8- 21n 2. Thus 

s,"" $ cos 0d0  = - ZW(x) In (L/r,) + (4/n) W ( x )  Kr,In (L/r,) ($ - 2 In 2 + in2)  

-29'(W){1 -(2/n)Kr0In(L/r,)}-2W(x) (3-21n2). (5.5) 

The expression derived from (4.6) is similar, with K-l replacing L, W* replacing 
W ,  andL?* replacingy. If we neglect all terms of order smaller than Kr, times 
the hydrostatic force, we have 

s,"" q5 cos 8d6' + - 2W(x) In (L/r,) - W ( x )  (3  - 41n 2) - 2 S (  W ) .  (5.6) 

Turning now to the wave damping, we find first the potential at a great distance 
from the body. The only term in the potential that contributes to this is the first 
term 

and for large values of x 2 + z 2  we may replace $, by its asymptotic value. It is 
easily shown from (2.9), that 

$,(x, y, z )  inh'e-KuHJl){h'(x2 + z2)*}, 

see also Havelock (1955). Then if x = Zcos a, z = Zsina, the integral (5.7) is 
asymptotically 

- <)2+ 2214) d< 

a,(c) HJ1){K[Z2 - 2Z< cos a + c2]4) dc (5.8) 

by a known addition theorem (ErdBlyi 1953, p. 101, equation (29)) for the Hankel 
function. Equation (5.9) gives explicitly the wave amplitude contained in each 
individual Fourier component. The mean energy radiated per unit time by the 
nth component is obtained from the asymptotic expansion 

H $ ) ( K ~ )  N ( 2 / n ~ ~ ) 3  eiKle-Sinn-&, 

and from the result that the rate of energy transmission for a real-vaZued potential 
$*(x,y,z,t) is -p(a$*/at) (a$*/&) per unit area, where a$*/an is the velocity 
component normal to the area. We consider the energy transmission across a 
vertical circular cylinder of large radius. On taking the real and imaginary parts 
of (5.9) we find in this way that the mean rate of energy transmission for the nth 
Fourier component is 
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when n 2 1, and is half this expression when n = 0, where .Z& is the complex 
conjugate of a,. Also it is easy to show by direct integration that the various 
Fourier components radiate energy independently. The total mean rate of energy 
radiation is therefore 

(5.11) 

by the addition theorem for Bessel functions; in this expression ao(C) is given by 
(3.17) or (4.8) according as K L  is not large or not small. An equivalent expression 
in terms of Fourier transforms is 

(5.12) 

6. Conclusion 
We have now obtained the velocity potential of a slender pointed body of 

revolution making small oscillations in the free surface a t  zero forward speed. 
Experience with slender-body theory in an incompressible unbounded medium 
suggests that these results can be extended to more general cross-sections (cf. 
Ursell19493), and since the problem remains linear (at zero speed) it may also be 
possible to allow for the effect of blunt ends. Much more interesting would be a 
solution to the full problem of the oscillating slender body at forward speed 
(necessarily pointed if the disturbance is to be small), for here our present know- 
ledge is very incomplete. Like slender-body theory in a compressible unbounded 
medium (Ward 1955) this gives rise to non-linear problems for which a scheme of 
successive approximations based on a slenderness parameter can be developed. 
The nth approximation satisfies linear equations involving the previous (n - 1) 
approximations, and as soon as these are involved non-linearly the calculation 
in practice terminates. It will be interesting to see whether these calculations 
can be carried far enough to give useful results for the full problem. Recent work 
(Tuck 1962) has already shown that a useful theory can be constructed on these 
lines for non-oscillating surface ships at  forward speed. 

This work was partially supported under Contract Nonr-3692( 00) between 
TRG, Inc. and the Office of Naval Research. 
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Appendix. Fourier analysis of wave-source and wave-free potentials 

According to (2.9) the potential is 

A. 1. The wave Source at the origin 

In  the inner integral change the variable of integration to k = - k' cos/3'. Then 
this integral is 

and on changing the order of integration by use of the relation 

f(k,k')dk)dk' = /0° --m ( h i f ( k , k ' ) d k ' ) d k  

i t  is found that 

It follows at once that the Fourier transform 

(A. 1.3) 

The expansion (2.13) of this integral for small Ikl r will now be proved. There are 
two different expressions, according as K Ikl. If K > (kl, put K = Ikl cosha. 
It will first be shown that, when z = 0, 

m 

Q0(k,r,O) = (ni-a)cotha 2 1 0 ( l k l r ) + 4 ~  ( -  l)mIm(lklr)coshma 
1 

a Q, 

+ 2K0( Ikl r )  + 4 2 ( - l)m-l [%Iv( Ikl r ) ]  sinhma cotha. (A. 1.5) 
1 v=m 

For let /3 be an arbitrary positive number and consider the Laplace transform 
of @,, 
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an elementary integral, 

2 1 
[kl coshB+cosha 

((ni - CX) coth CL + p Goth /3) -- - 

2 (ni - CX) Goth cx 00 

- _  
- IkI sinhp-- 

(1 + 2 ( -  l)mcoshmae-mP 

00 +L (1 + 2 2 ( -  l)msinhmacothae-mP 
sinh J? 1 

And it is known (Watson 1944, p. 386, equation (8)) that 

(A. 1.7) 

(A. 1.8) 

(A. 1.9) 

On applying the inverse Laplace transformation to (A. 1.6) and using (A. 1.7)- 
(A. 1.9) the result (A.1.5) is obtained. To obtain the expansion (2.11) of 
Qo(k, y, z )  when z $. 0 we observe that Qo is a solution of the elliptic partial 
differential equation (g + g - k2) Q,(k, y, 2) = 0 (A. 1.10) 

and is thus completely determined by its values on z = 0, since it is an even 
function of z. But the series on the right-hand side of (2.1 1) is also clearly an even 
solution of (A. 1.10) since all its terms are even solutions, and by (A. 1.5) it  coin- 
cides with Qo when z = 0. This establishes equation (2.11) when K > Ikl. When. 
K < lkl the argument is similar but simpler since (A. 2.4) can then be integrated 
along the real p-axis. 

A. 2. Wave-free potentials at the origin 
We have 

(A. 2.1) 

since both sides are functions harmonic in y > 0 and take the value y-m-1 on the 
y-axis. Thus 

whence it follows, as in $A. 1, that 

This is equivalent to equation (2.40) above. 
33-2 
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